questions for the photographers and tech geeks

A little lite reading for those that might be interested. Tom like Roger says the 2.4 ghz frequency is going to go nowhere under water so will have to use it for above water things. With the old Gopro's I have takin 1900 photos without running the battery dead. How long do you leave the traps down for? This next part is off of Wikipedia about under water communications.



Communication with submarines is difficult because radio waves do not travel well through thick electrical conductors like salt water.
The obvious solution is to surface and raise an antenna above the water, then use ordinary radio transmissions. Early submarines had to surface frequently for oxygen needed by their diesel engines to charge their batteries. During the Cold War, however, nuclear-powered submarines were developed that could stay submerged for months. To communicate with submerged submarines several techniques are used.
Contents [hide]
1 Acoustic transmission
2 Very low frequency
3 Extremely low frequency
3.1 ELF transmissions
4 Standard radio technology
5 See also
6 References
7 External links
[edit]Acoustic transmission

Sound travels far in water, and underwater loudspeakers and hydrophones can cover quite a gap. Apparently, both the American (SOSUS) and the Russian Navy have placed sonic communication equipment in the seabed of areas frequently traveled by their submarines and connected it by underwater communications cables to their land stations. If a submarine hides near such a device, it can stay in contact with its headquarters. An underwater telephone sometimes called Gertrude is also used to communicate with submersibles.
[edit]Very low frequency



The VLF antenna of a WWII submarine
VLF radio waves (3–30 kHz) can penetrate seawater to a depth of approximately 20 meters. Hence a submarine at shallow depth can use these frequencies. A vessel more deeply submerged might use a buoy on a long cable equipped with an antenna. The buoy rises to a few meters below the surface, and may be small enough to remain undetected by enemy sonar / radar.[citation needed]
Due to the low frequency a VLF broadcast antenna needs to be quite big. In fact, broadcasting sites are usually a few square kilometers (or miles). This prevents such antennas being installed on submarines. Submarines only carry a VLF reception aerial, and do not respond on such low frequencies. So a ground-to-submarine VLF broadcast is always a one way broadcast, originating on the ground and received aboard the boat. If two-way communication is needed, the boat must ascend to periscope depth (just below the surface) and raise a telescopic mast antenna to communicate on higher frequencies (such as HF, UHF or VHF).
Because of the narrow bandwidth of this band, VLF radio signals cannot carry audio (voice), and only transmit text messages at a slow data rate. VLF data transmission rates are around 300 bit/s - or about 35 8-bit ASCII characters per second (or the equivalent of a sentence every two seconds) - a total of 450 words per minute. Simply shifting to 7-bit ASCII increases the number of transmitted characters per time unit by 14%. An additional shift to a 6-bit or a 5-bit code (such as the baudot code) would result in speeds of more than 600 and 700 words per minute.
[edit]Extremely low frequency



1982 aerial view of the Clam Lake, Wisconsin ELF facility.
Electromagnetic waves in the ELF frequency range (3–300 Hz) (see also SLF) can penetrate seawater to depths of hundreds of meters, allowing communication with submarines at their operating depths. Building an ELF transmitter is a formidable challenge, as they have to work at incredibly long wavelengths: The US Navy's system (called Seafarer) operated at 76 hertz,[1] the Soviet/Russian system (called ZEVS) at 82 hertz.[2] The latter corresponds to a wavelength of 3,658.5 kilometers. That is more than a quarter of the Earth's diameter. Obviously, the usual half-wavelength dipole antenna cannot be constructed, as it would spread across a large country.
Instead, one has to find an area with very low ground conductivity (a requirement opposite to usual radio transmitter sites), bury two huge electrodes in the ground at different sites, and then feed lines to them from a station in the middle, in the form of wires on poles. Although other separations are possible, 60 kilometers is the distance used by the ZEVS transmitter located near Murmansk. As the ground conductivity is poor, the current between the electrodes will penetrate deep into the Earth, essentially using a large part of the globe as an antenna. The antenna length in Republic, Michigan was approximately 52 kilometers (32 mi). The antenna is very inefficient. To drive it, a dedicated power plant seems to be required, although the power emitted as radiation is only a few watts. Its transmission can be received virtually anywhere. A station in Antarctica at 78°S 167°W was noticed when the Soviet Navy put their ZEVS antenna into operation.[2]
Due to the technical difficulty of building an ELF transmitter, only the US and the Russian Navy owned such systems. Until it was dismantled in late September 2004, the American Seafarer, later called Project ELF system (76 Hz) consisted of two antennas, located at Clam Lake, Wisconsin (since 1977) and at Republic, Michigan in the Upper Peninsula (since 1980). The Russian antenna (ZEVS, 82 Hz) is installed at the Kola Peninsula near Murmansk. It was noticed in the West in the early 1990s. The British Royal Navy once considered building their own transmitter at Glengarry Forest, Scotland, but the project was canceled.
[edit]ELF transmissions
The coding used for US military ELF transmissions employed a 64-symbol Reed-Solomon error correction code, meaning that the alphabet had 64 symbols, each represented by a very long pseudo-random sequence. The entire transmission was then encrypted. The advantages of such a technique are that by correlating multiple transmissions, a message could be completed even with very low signal-to-noise ratios, and because only a very few pseudo-random sequences represented actual message characters, there was a very high probability that if a message was successfully received, it was a valid message (anti-spoofing).
The communication link is one-way. No submarine could have its own ELF transmitter on board, due to the sheer size of such a device. Attempts to design a transmitter which can be immersed in the sea or flown on an aircraft were soon abandoned.
Due to the limited bandwidth, information can only be transmitted very slowly, on the order of a few characters per minute (see Shannon's coding theorem). Thus it is reasonable to assume that the actual messages were mostly generic instructions or requests to establish a different form of two-way communication with the relevant authority.
[edit]Standard radio technology

A surfaced submarine can use ordinary radio communications. Submarines may use naval frequencies in the HF, VHF and UHF ranges (i.e., bands), and transmit information via both voice and teleprinter modulation techniques. Where available, dedicated military communications satellite systems are preferred for long distance communications, as HF may betray the location of the submarine. The US Navy's system is called Submarine Satellite Information Exchange Sub-System (SSIXS), a component of the Navy Ultra High Frequency Satellite Communications System (UHF SATCOM).
 
I never thought I would have any use for one of those GoPro type cameras. I am re-thinking that. We got our 5th wheel out of storage today. While backing into a site, Joan guides me in. Motorhomes we have owned in the past, have had back-up cameras, so I could see right where I was backing. No camera on the back of the 5th wheel, so Joan always spots for me... as long as I can keep her in view of the mirrors.

JoanParkingE.jpg

So, here's what I'm thinking: mount a GoPro on a helmet. Put the helmet on Joan when she goes to the back of the 5th wheel or the boat. Blue tooth the images to my phone so I can see what the heck is going on back there! :wink:

Think that'll work?

Best wishes,
Jim
 
JamesTXSD":3jkdug0a said:
I never thought I would have any use for one of those GoPro type cameras. I am re-thinking that. We got our 5th wheel out of storage today. While backing into a site, Joan guides me in. Motorhomes we have owned in the past, have had back-up cameras, so I could see right where I was backing. No camera on the back of the 5th wheel, so Joan always spots for me... as long as I can keep her in view of the mirrors.

JoanParkingE.jpg

So, here's what I'm thinking: mount a GoPro on a helmet. Put the helmet on Joan when she goes to the back of the 5th wheel or the boat. Blue tooth the images to my phone so I can see what the heck is going on back there! :wink:




Think that'll work?

Best wishes,
Jim



So could you just stick a couple mounts on the trailer and mount the camera to the trailer. You could put one on the truck and use it for hitching up too. Or you could use the suction cup mount.
 
JoanParkingE.jpg

"Or you could use the suction cup mount." - J Kidd

I like that idea!

Just use the suction cup mount.

Sticks anywhere!

On Joan's forehead, too!

Or whoever you get to replace her when she's gone.

That is, if you have any money left after your surgery and divorce.

You did want to Go Pro and Be a Hero, didn't you? :evil:

Joe. :teeth :thup
 
For full disclosure, I was kidding. I would no more put a helmet on the Blonde for the purpose of sticking a camera on it, or suction cup stick a camera to her forehead than I would have a desire to sleep on the couch. She has seen me laughing about this thread, and is likely to read this. :wink: :hug :love :hug2

Tom, I don't fear her "kicking my ass"... women have various other ways of evoking regret in us guys. Again, just kidding. My lovely wife would never do anything like that. :roll: :mrgreen:

Just buy the damn camera, Tom, and move on... nothing here to see.

:lol:
 
Not with all the body armor in the world!! :shock: It took my sphincter a couple hours to untighten after "Riding Down the Volcano" in Maui... and that was a guided trip with special downhill bikes. I had visions of being hauled to the Emergency Room while flying across wet metal cattle guards. The tree in the path in that video brought back that TSS* again.

Heck, I darn near got motion sick just watching that video. :roll:

And therein lies the problem with those GoPro cameras: it encourages behavior like that. Not a good thing for those of us who are old enough to know that we don't heal quickly anymore.

* Tightened Sphincter Syndrome
 
BrentB":2brhnrr7 said:
human body has several sphincters and the anus has two.

just in case you wanted to know :wink:

Thank you for the specifics, Brent. Pretty sure ALL of 'em were tightened up at that time! For sure one of the two, since my ass was pretty well stuck to that seat!

Just in case you wanted to know. :wink:
 
So that's the greatest thing about Go Pro cameras. It allows me to experience things like this bike ride from the safety of my home. I dont have to put my ass on the line to see what it would be like.
 
Back
Top